Pharmacotherapies for the Treatment of Eosinophilic Esophagitis: 
State of the Art Review

Willemijn E. de Rooij1 · Evan S. Dellon2 · Claire E. Parker3 · Brian G. Feagan3,4,5 · Vipul Jairath3,4,5 · Christopher Ma3,6 · Albert J. Bredenoord1

© Springer Nature Switzerland AG 2019

Abstract
Eosinophilic esophagitis (EoE), a chronic allergic disorder of the esophagus, is characterized by symptoms of esophageal dysfunction and eosinophil-predominant inflammation. The incidence of EoE has increased substantially over the past two decades, coinciding with the so-called allergy epidemic. Current treatment options consist of dietary intervention, endoscopic dilatation, and pharmacotherapy. Given that EoE is a chronic progressive disease that is prone to relapse after cessation of therapy, these treatment options are suboptimal for long-term management. Persistent, uncontrolled esophageal inflammation is associated with esophageal remodeling and stricture formation, thus, the creation and/or discovery of alternative treatments is of paramount importance. The pathogenesis of EoE is currently under intense investigation, and recent insights concerning cellular and molecular etiology have led to the development of therapies that target specific pathophysiological pathways. This article provides an overview of established EoE pharmacotherapies, which include proton pump inhibitors and swallowed topical steroids. Additionally, anti-allergic targets, immunosuppressives, and monoclonal antibodies (such as mepolizumab, reslizumab, QAX576, RPC4046, dupilumab, omalizumab, and infliximab) that have been evaluated as treatments for EoE are summarized. Finally, several promising therapeutic agents (e.g., sialic acid-binding immunoglobulin-like lectin 8 antibodies, the transforming growth factor-β1 signal blocker losartan, CC chemokine receptor type 3 antagonists, thymic stromal lymphopoietin antibodies, antibodies targeting the α4β7 integrin, anti-interleukin-9 antibodies, and anti-interleukin-15 antibodies) that target specific molecules or cells implicated in the pathogenesis of EoE are proposed.

1 Introduction
Eosinophilic esophagitis (EoE) is a chronic, progressive, T-helper type 2 (Th2) immune-mediated disorder characterized by symptoms of esophageal dysfunction and eosinophil-predominant inflammation [1, 2]. The incidence and prevalence of EoE has risen considerably since it was first described as a unique disease entity in the early 1990s [3–6]. In industrialized countries, incidence and prevalence estimates are five to ten cases per 100,000 individuals and 0.5–1 per 1000 individuals, respectively [3, 7–13]. By comparison, these rates are similar to those of Crohn’s disease [14]. The rise of EoE coincides with the global so-called allergy epidemic, and most patients with EoE have atopic comorbidities such as allergic rhinitis, asthma, immunoglobulin E (IgE)-mediated food allergies and atopic dermatitis [15, 16]. The peak incidence of EoE is between the ages of 20 and 40 years, with a 3:1 male-to-female ratio in every age group [17]. Children often present with non-specific symptoms of abdominal pain, failure to thrive and feeding disorder, whereas adults typically experience dysphagia and food impaction [1, 2, 18].

When EoE is suspected on clinical grounds, an upper endoscopy with at least six biopsies taken from two levels of...
The incidence of eosinophilic esophagitis (EoE) has increased substantially over the past two decades, coinciding with the so-called allergy epidemic.

Current treatment options consist of dietary intervention, endoscopic dilatation, and pharmacotherapy, including proton pump inhibitors and swallowed topical corticosteroids.

The pathogenesis of EoE is currently under intense investigation, and recent insights concerning cellular and molecular etiology have led to the development of therapies that target specific pathophysiological pathways.

of the esophagus is recommended [19]. Endoscopic disease activity is detected in approximately 90% of symptomatic patients. While edema, linear furrows, and white exudates are common in pediatric EoE, both inflammatory and fibrotic features—including rings and strictures—frequently manifest in adults [20]. A diagnosis of EoE is confirmed if at least one esophageal biopsy shows a minimum of 15 eosinophils per high power field (eos/hpf) and other causes of esophageal eosinophilia are excluded [21].

In clinical practice, the management of EoE has historically consisted of the “3-D approach”: diet, drugs, and dilation, with the choice of strategy depending on disease phenotype (inflammatory and/or fibrotic) and patient preferences. A therapeutic algorithm is proposed in the European EoE guidelines, as shown in Fig. 1 [21].

Patients with EoE are prone to relapse following initial response to therapy, and longstanding inflammation is associated with esophageal remodeling and consecutive stricture formation [22–24]. Although reducing or eliminating esophageal inflammation may prevent the fibrotic process, direct evidence to support this theory is lacking. Thus, the treatment objectives in EoE are to reduce symptoms of esophageal dysfunction and prevent long-term complications and esophageal damage by maintaining histologic remission.

This article summarizes the contemporary pharmacological strategies for treating EoE, the drugs currently under investigation, and the therapeutic targets on the horizon.

### 2 Goals of Therapy

Management of EoE requires an integrated approach, with identification and avoidance of dietary antigens playing a fundamental role. The short-term goals of medical therapy include symptom resolution and attainment of histologic remission, defined as an eosinophil count of < 15 eos/hpf, while a growing body of evidence indicates that prevention of dysmotility and strictures is a long-term management goal [22, 24]. Thus, medical treatments that prevent submucosal fibrosis and tissue remodeling are of considerable interest.

![Fig. 1 Therapeutic algorithm proposed by Lucendo et al. [21] for treating eosinophilic esophagitis in clinical practice](image-url)
Whether targeted anti-inflammatory therapy can achieve this goal, or a need exists for antifibrotic agents capable of changing the natural course of disease, are critical questions for drug development.

### 2.1 Induction and Maintenance Therapy

After successful induction of remission with corticosteroids, EoE recurs almost uniformly with drug cessation. Accordingly, effective maintenance therapy is needed [1, 25, 26]. A growing body of evidence demonstrates the value of proton pump inhibitors (PPIs) as maintenance agents. Sustained 1-year remission rates of approximately 70–80% have been reported for low-dose PPI maintenance therapy among children and adults [27–29]. Long-term PPI use is generally well-tolerated, although the lowest effective dose should be used to minimize potential complications [30, 31]. Most efficacy data for swallowed topical corticosteroids comes from short-term induction studies, and, as such, the efficacy and safety of maintenance therapy with these agents is poorly understood. Observational studies suggest that the benefits of corticosteroids diminish over time [32, 33]. Only one placebo-controlled randomized controlled trial (RCT) has evaluated the effect of swallowed budesonide (0.25 mg twice daily [BID]). After 1 year of follow-up, 35.7% (5/14) of patients receiving budesonide and 0% (0/14) of those receiving placebo achieved disease remission [34]. In a prospective, open-label study of 54 children who received swallowed aerosolized fluticasone, a sustained remission rate of 63% was observed after 2 years of follow-up [35].

Potential adverse events associated with long-term systemic corticosteroid exposure include oral and esophageal candidiasis infections, adrenal suppression, growth retardation, osteopenia, osteoporosis, glucose intolerance, and cataract formation [18, 36, 37]. However, the limited absorption and high first-pass metabolism by the liver mean the systemic effects of swallowed corticosteroids are minimal [38]. The fibrosing nature of the EoE disease process and high rate of recurrence following cessation of induction therapy may require prolonged treatment. At present, the minimum dose of swallowed topical corticosteroids required to effectively and safely maintain remission of EoE is unknown. Furthermore, existing data indicate that the durability of this strategy is suspect [39].

### 2.2 Management of Complications and Treatment Algorithms

Esophageal rigidity, with symptoms such as dysphagia and food impaction, are consequences of the progressive, fibrostenotic course of EoE. Each additional year of undiagnosed EoE is estimated to increase the risk of stricture by 9% [24]. Therefore, prevention and reversal of structural remodeling and fibrosis are attractive therapeutic goals [1]. In EoE, the Th2 response is characterized by several pro-inflammatory cytokines that promote eosinophil activation and recruitment to the esophageal tissue as well as activation of basophils and mast cells [40–42]. Eosinophils express transforming growth factor (TGF)-β, which induces tissue fibrosis and subsequent esophageal remodeling and stricture formation [43]. In addition, wall stiffness increases esophageal smooth muscle cell gene expression of phospholamban and collagen I by mechanical signals (“mechanosignaling”), which results in smooth muscle hypertrophy. This inflammation-independent mechanism implies that treatment strategies focused on blocking the effects of inflammatory mediators may be effective in EoE management [44].

In clinical practice, choice of treatment strategy depends on EoE phenotype (inflammatory and/or fibrostenotic) and patient preferences [21]. Both dietary intervention and swallowed topical corticosteroids are efficacious in patients with an inflammatory phenotype [45, 46], whereas patients with fibrostenosing disease may be less likely to respond to an elimination diet [47]. Limited evidence indicates that control of inflammation may decrease the need for subsequent esophageal dilation of fibrostenotic strictures in adult patients with EoE, thereby suggesting that remission of eosinophilic inflammation reduces the process of tissue remodeling and fibrosis [48]. However, other studies have shown that resolution of superficial epithelial eosinophilia does not preclude subepithelial remodeling and progression to stricture formation [47, 49, 50]. The process of subepithelial remodeling and fibrosis requires further elucidation, with a key question being whether this progression is reversible. Although age and disease duration may be critical factors for disease progression, little is known about other determinants. Better understanding of the molecular mechanisms of fibrosis in EoE are needed to inform clinical decision making.

### 3 Proton Pump Inhibitors

The role of PPIs in EoE management has evolved over the last two decades. Past guidelines recommended initiating 8 weeks of high-dose PPI therapy in patients with a suspected diagnosis of EoE to rule out PPI-responsive esophageal eosinophilia (PPI-REE)—a designation used to describe patients with symptomatic, endoscopic, and histologic evidence of EoE who do not present with gastroesophageal reflux disease (GERD) yet respond to PPI therapy [1, 21, 51]. More recent insights indicate that although PPI-REE is a sub-phenotype of EoE, GERD and EoE are not mutually

\[\Delta\] Adis
It is hypothesized that (1) increased acid exposure may be secondary to EoE since esophageal dysmotility contributes to reflux and (2) patients with GERD are predisposed to develop EoE given that gastric acid damages the mucosal barrier [53]. For this reason, PPIs are now used as first-line or adjunctive therapy in both PPI-REE (though this term is being phased out) and EoE with co-existing GERD [19].

Additional observations support the notion that a complex relationship exists between acid reflux and EoE. Patients with EoE are more sensitive to acid exposure than are healthy controls, and PPIs are effective for reducing pain [54]. The efficacy of PPIs for reducing symptomatic esophageal eosinophilia has been reported in several case series and a small clinical trial that showed a 50% (5/10) rate of disease remission after 8 weeks of PPI therapy [55–58]. According to a systematic review and meta-analysis that included data from 619 patients (188 children and 431 adults) with symptomatic esophageal eosinophilia, 60.8% (376/619) of cases had clinical improvement and 50.5% (313/619) cases achieved histologic remission (defined as <15 eos/hpf) after PPI treatment [59]. The mechanism by which PPIs reduce esophageal eosinophilia may be secondary to restoration of mucosal barrier integrity and reduced environmental allergen exposure [60].

The potential role of acid suppression in EoE management is also supported by the observation that vonoprazan, a potassium-competitive acid blocker (P-CAB), induces histologic remission in patients with EoE that do not respond to PPIs [61]. However, PPIs are associated with several acid-independent anti-inflammatory effects that may reduce esophageal eosinophilia, including attenuation of Th2-cytokine-induced eotaxin-3 expression—a process relevant to reduced eosinophil activation and migration [62–64]. PPIs also inhibit acid-induced endothelial expression of adhesion molecules (including intracellular adhesion molecule 1 and vascular cell adhesion molecule 1), which may decrease eosinophilic inflammation [65]. In contrast to the effect on epithelial cells, PPIs do not appear to inhibit Th2-cytokine stimulated eotaxin-3 expression by esophageal fibroblasts directly, suggesting that PPIs have limited impact on esophageal remodeling and fibrosis formation [66].

Although PPIs are endorsed in current EoE treatment guidelines, no specific recommendations exist regarding the role of PPIs as initial or combination therapy [19]. PPI use remains off-label as this drug class has not been formally registered by any regulatory agency as an EoE therapy.

### 4 Topical Corticosteroids

Swallowed topical corticosteroids are a mainstay of EoE therapy that provide an anti-inflammatory effect by non-specifically inhibiting the Th2 immune response, with secondary improvement in esophageal barrier integrity and reduced esophageal remodeling and fibrosis [67, 68]. An observational study of 20 pediatric patients who received methylprednisolone 1.5 mg/kg BID for 4 weeks provided the first evidence that oral corticosteroids are effective in treating EoE. Clinical remission and clinical response were achieved in 65% (13/20) and 95% (19/20) of patients, respectively, with the average number (± standard deviation [SD]) of eos/hpf declining from 34.2 ± 9.6 to 1.5 ± 0.9 [69]. At 12 months after treatment, 50% (10/20) of patients remained asymptomatic.

In a subsequent RCT of 80 pediatric patients with EoE, no difference was observed between the oral systemic corticosteroid prednisone 1 mg/kg BID and oral topical corticosteroid fluticasone propionate (two puffs [110 µg/puff] four times daily). After 4 weeks of therapy, 95% (30/32) of patients receiving prednisolone and 94% (34/36) of those assigned to fluticasone propionate attained combined clinical remission and histologic improvement [26]. Importantly, systemic adverse events (e.g., hyperphagia, weight gain, and cushingoid features) were reported in 40% (16/40) of prednisolone-treated patients, whereas none of the topically treated patients experienced systemic, steroid-related adverse events. It should be noted that 15% (6/40) of fluticasone propionate-treated patients developed esophageal candidiasis compared with 0% (0/40) in the prednisolone group.

No corticosteroids are currently approved by the US FDA for the treatment of EoE. Nevertheless, oral aerosolized fluticasone propionate and oral viscous budesonide are frequently prescribed as off-label therapy. Recently, these treatments were directly compared for initial treatment of EoE in a randomized, double-blind trial [147]. Patients were randomized to receive oral viscous budesonide slurry BID plus a placebo inhaler (n = 56) or a multi-dose fluticasone inhaler BID plus placebo slurry (n = 55). Between baseline and week 8, the mean peak eosinophil count decreased from 73 to 15 eos/hpf and from 77 to 21 eos/hpf in the oral viscous budesonide and multi-dose fluticasone inhaler groups, respectively (p = 0.31). Similarly, there was no statistically significant between-group difference with respect to the change in the Dysphagia Symptom Questionnaire (DSQ) score: the mean DSQ score decreased from 11 to 5 in the oral viscous budesonide group and from 8 to 4 in the multi-dose fluticasone inhaler group (p = 0.70). These findings suggest that both oral aerosolized fluticasone and oral viscous budesonide are acceptable EoE treatments.
In an RCT comparing 8 weeks of viscous \( n = 11 \) and nebulized topical budesonide \( n = 11 \) therapy, the latter agent was demonstrated to be more effective than the former in reducing esophageal eosinophilia, likely due to better esophageal distribution and increased contact time [70]. This finding underscores the importance of bioavailability and has prompted the initiation of pharmacokinetic and dose-finding studies of existing corticosteroids in addition to the development of novel formulations.

Induction treatment with two budesonide formulations (budesonide effervescent tablet \([\text{BET}]\) for orodispersible use, 1 or 2 mg BID, and budesonide viscous suspension \([\text{BVS}]\), 5 ml BID, 0.4 mg/ml) was evaluated in a placebo-controlled RCT that included 76 adult patients with EoE [71]. Over 94% of patients in the BET, BVS, and placebo groups achieved clinical response, defined as a decrease in the dysphagia score of at least 3 points from baseline after 2 weeks. Budesonide—irrespective of dose or formulation—was demonstrated to be statistically superior to placebo for induction of histologic remission (BET 1 mg/d = 100% [19/19]; BET 2 mg/d = 94.7% [18/19]; BVS = 94.7% [18/19]; placebo = 0% [0/19]). When asked which formulation was preferable, 80% of patients chose BET over BVS. Moreover, in a placebo-controlled, phase III RCT of adult patients with EoE, 58% (34/59) of those who received BET 1 mg BID achieved the primary endpoint of complete remission (defined as a mean dysphagia and odynophagia severity score ≤ 2 on a scale of 0–10 for each day during week 5 of treatment). Dysphagia and odynophagia severity scores were consistently lower in the BET group at all time points compared with the placebo group, resulting in a significant, although modest, reduction in clinical symptoms and peak eosinophil counts compared with placebo after 8 weeks of treatment [81]. These results support further investigation of CRTH2 antagonists as potential corticosteroid-sparing agents.

### 5 Anti-Allergic Targets

The mast cell-stabilizing agent cromolyn sodium, which modifies chloride channels in mast cell membranes, was initially investigated as an EoE treatment in a pediatric cohort study \( N = 381 \) that failed to show either clinical or histologic improvement [36]. Similarly, a recent 8-week RCT that enrolled pediatric patients with EoE did not demonstrate a statistically significant reduction in either clinical symptoms or peak eosinophil counts in those assigned to viscous oral or nebulized sodium compared with placebo [74]. The use of mast cell stabilizers is therefore not recommended, as either induction or maintenance therapy in EoE.

It was previously speculated that decreasing eosinophil chemotaxis and cellular activity by using eosinophil-targeted agents may be an effective treatment strategy for eosinophil-related gastrointestinal disorders and asthma. Data from an \textit{in vitro} study and retrospective chart review suggested that montelukast, a leukotriene \( \text{D}_4 \) receptor antagonist that inhibits eosinophil protease activity and subsequent eosinophil chemoattraction, reduced symptoms and maintained remission in EoE [75, 76]. However, a subsequent placebo-controlled RCT and a prospective cohort study failed to demonstrate efficacy for maintenance of corticosteroid-induced remission [77, 78].

Other prostaglandins play critical roles in the eosinophil inflammation cascade. Prostaglandin \( \text{D}_2 \) (PG\( \text{D}_2 \); also known as chemoattractant receptor-homologous molecule expressed on Th2 cells [CRTH2]) mediates chemotaxis of eosinophils and expression of Th2 cytokines [79, 80]. In a small, placebo-controlled RCT performed in 26 adult patients with corticosteroid-dependent or corticosteroid-refractory EoE, treatment with the selective CRTH2 antagonist OC000459 resulted in a significant, although modest, reduction in clinical symptoms and peak eosinophil counts compared with placebo after 8 weeks of treatment [81]. This agent was demonstrated to be more effective than the formulation used in the ORTHADOX trial and was statistically significant in reducing eosinophil counts in those assigned to treatment.

### 6 Immunosuppressives

Evidence supporting the use of immunosuppressives in EoE is limited. The published literature consists of a single case series \( N = 3 \) that found thiopurines to be effective for maintaining clinical and histologic remission in corticosteroid-dependent patients with EoE. It is postulated that azathioprine and 6-mercaptopurine inhibit the recruitment and/or proliferation of T and B lymphocytes in the esophageal epithelium, thereby decreasing antigen processing and subsequent esophageal inflammation [82]. However, the use of thiopurines is not recommended in EoE because of their unfavorable safety profile and the lack of controlled evidence to support efficacy [83]. Data evaluating other immunosuppressives, including cyclosporine, tacrolimus, and methotrexate, are not currently available.

△ Adis
7 Monoclonal Antibodies

The introduction of biologic therapy has revolutionized the management of refractory allergic diseases such as asthma, atopic dermatitis, and nasal polyposis. In EoE, the Th2 cytokine signature indicates an allergic etiology. As such, research efforts have focused on both evaluation of therapies designed for other atopic conditions and development of antibodies directed against EoE-specific pathways. Investigational monoclonal antibodies that directly target cell signaling proteins implicated in Th2-predominant inflammation include interleukin (IL)-5, -4, -13, and IgE. Monoclonal antibodies directed toward T-helper type 1 cytokines including tumor necrosis factor (TNF)-α antagonists have also been evaluated (Table 1).

7.1 Interleukin (IL)-5 Antagonists

IL-5 is a pro-inflammatory cytokine secreted by T lymphocytes, mast cells, and eosinophils that induces eosinophil production, primes eosinophils to respond to activation signals, and promotes eosinophil trafficking to the esophagus [84–86]. Transgenic IL-5 overexpression is associated with the development of an EoE-like disease in murine models and local IL-5 inducing Th2 cell overexpression in EoE [87]. Targeting the IL-5 pathway with monoclonal antibodies was first explored in atopic conditions that feature tissue eosinophilia (i.e., asthma, nasal polyposis, and atopic dermatitis) [88–90]. In EoE, two monoclonal antibodies against IL-5 have been evaluated.

Mepolizumab, a humanized anti-IL-5 monoclonal IgG1 antibody, was first assessed in an open-label study (N = 4) of adults with longstanding, symptomatic EoE. Following three infusions of intravenous mepolizumab 10 mg/kg (to a maximum of 750 mg), all patients demonstrated clinical improvement and a substantial reduction in mean eos/hpf [91]. Although a substantial decrease in esophageal eosinophilia was observed, peak eosinophil counts remained > 20 eos/hpf. In contrast, limited clinical in esophageal eosinophilia was observed, peak eosinophil response at week 4 [91]. Although a substantial decrease in eosinophil count was reported in a subsequent placebo-controlled, phase II RCT (N = 11) that investigated 4 weeks of mepolizumab (750 mg/week for two doses, followed by 1500 mg/week for two doses if remission was not achieved) compared with placebo [92]. These findings are similar to those of a phase II RCT performed in 59 pediatric patients who received a total of three infusions, one every 4 weeks, of mepolizumab 0.55 mg/kg (n = 19), 2.5 mg/kg (n = 20), or 10 mg/kg (n = 20) [93]. When the dose groups were combined, 89.5% (51/59) of patients had a mean esophageal eosinophil count < 20 eos/hpf.

Reslizumab, a fully humanized IgG4 antibody against IL-5, was evaluated in a controlled RCT of 226 pediatric patients with EoE who were randomized to monthly infusions of 1, 2, or 3 mg/kg of intravenous reslizumab or placebo. After 4 months of treatment, a statistically significant difference in the proportion of reslizumab patients with a reduced median peak eosinophil count compared with placebo was observed, yet reslizumab was not found to be effective for induction of clinical response [94]. Six patients from one site continued to receive reslizumab (2 mg/kg) in an open-label extension (OLE) phase [95]. Additionally, four patients were treated with reslizumab on the grounds of compassionate use. After 9 years of treatment, reslizumab was associated with substantial improvement in symptoms related to EoE, including dysphagia, abdominal pain, heart burn, vomiting, and reflux, as well as reduced eosinophil counts.

Targeting the IL-5 pathway by administration of benralizumab, an antibody that blocks the IL-5Rα receptor, is a highly effective therapy for asthma; it recently received FDA and EMA approval as add-on maintenance therapy for children (> 12 years) and adults with severe eosinophilic asthma [96–98]. Benralizumab has not yet been evaluated in EoE, but a placebo-controlled clinical trial (NCT03473977) is currently investigating the efficacy and safety of three monthly doses of benralizumab 30 mg for the treatment of eosinophilic gastritis/gastroenteritis in children (> 12 years) and adults.

7.2 IL-13 and IL-4/IL-13 Antagonists

IL-13 secreted by Th2 cells and activated eosinophils plays a vital role in the pathogenesis of EoE by increasing eotaxin-3 and promoting fibroblasts to produce peristatin, which increases eosinophil chemotaxis [42, 99]. IL-13 also affects epithelial barrier integrity, as it is implicated in the dysregulation of the important basement membrane proteins desmosomal cadherin desmoglein 1, filaggrin, and involucrin [100, 101]. In mouse models, administration of pharmacological doses of IL-13 induces pathology similar to human EoE and has been shown to cause esophageal tissue remodeling. In addition, IL-13 was found to be markedly overexpressed in the esophagus of patients with EoE [41, 42, 102]. Similarly, IL-4, a cytokine that causes naïve T-helper cells to differentiate into Th2 cells and activates B-cell class switching to produce IgE is found in increased concentrations in patients with EoE [41]. Furthermore, stimulation of epithelial cells by IL-4 leads to production of eotaxin-3 through STAT6 signaling and subsequent recruitment of eosinophils into tissue. Two monoclonal antibodies targeting IL-13 (QAX576 and RPC4046) and one monoclonal antibody targeting IL-4/IL-13 (dupilumab) have been evaluated in EoE.

QAX576 was first evaluated as an EoE therapy during a phase II trial of 23 adults who were randomized to three infusions of QAX576 6 mg/kg or placebo at weeks 0, 4, and...
Although the primary endpoint (histologic response, defined as ≥75% reduction in peak esophageal eosinophil count) was not met, the mean eosinophil count was reduced by 60% in the QAX576-treated group and increased by 23% in the placebo arm at 6 months (p = 0.004). No significant improvement in dysphagia was reported by patients assigned to active drug compared with those who received placebo. Development of QAX576 has since been discontinued.

RPC4046 is a monoclonal antibody that blocks IL-13 from binding to both IL-13 receptor subunit alpha 1 (IL13RA1) and 2 (IL13RA2). In a recent phase II placebo-controlled RCT, 99 adult patients with EoE were assigned to RPC4046 180 or 360 mg or placebo once weekly in a 1:1:1 ratio [104]. After 16 weeks of treatment, a statistically significant reduction in mean eosinophil count was observed in both RPC4046 groups (180 mg: 94.8 ± 67.3, p < 0.0001; 360 mg: 96.8 ± 67.3, p < 0.0001).

<table>
<thead>
<tr>
<th>Target Monoclonal antibody</th>
<th>Study</th>
<th>Design</th>
<th>Population (N)</th>
<th>Dosage</th>
<th>Duration (months)</th>
<th>Clinical response</th>
<th>Histologic response</th>
<th>Safety and tolerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-5 Mepolizumab</td>
<td>Stein et al. [91]</td>
<td>Open-label, phase I RCT</td>
<td>Adults (4)</td>
<td>10 mg/kg monthly, max. 750 mg</td>
<td>3</td>
<td>+</td>
<td>+</td>
<td>Mild AEs</td>
</tr>
<tr>
<td>IL-5 Reslizumab</td>
<td>Spergel et al. [94]</td>
<td>Placebo-controlled RCT</td>
<td>Children (226)</td>
<td>1, 2, or 3 mg/kg monthly</td>
<td>4</td>
<td>–</td>
<td>+</td>
<td>Mild AEs</td>
</tr>
<tr>
<td>IL-13 QAX576</td>
<td>Rothenberg et al. [103]</td>
<td>Placebo-controlled, phase II RCT</td>
<td>Adults (23)</td>
<td>6 mg/kg monthly</td>
<td>3</td>
<td>–</td>
<td>+</td>
<td>Well-tolerated</td>
</tr>
<tr>
<td>IL-13 RPC4046</td>
<td>Hirano et al. [104]</td>
<td>Placebo-controlled, phase II RCT</td>
<td>Adults (99)</td>
<td>180 or 360 mg weekly</td>
<td>4</td>
<td>–</td>
<td>+</td>
<td>Mild AEs</td>
</tr>
<tr>
<td>IL-5/IL-13 Dupilumab</td>
<td>NCT02379052</td>
<td>Placebo-controlled, phase II RCT</td>
<td>Adults (47)</td>
<td>300 mg weekly</td>
<td>3</td>
<td>+</td>
<td>+</td>
<td>Well-tolerated</td>
</tr>
<tr>
<td>IL-4/IL-13 Omalizumab</td>
<td>Clayton et al. [116]</td>
<td>Placebo-controlled, phase II RCT</td>
<td>Adults (30)</td>
<td>0.016 mg/kg/IgE every 2–4 weeks</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>Well-tolerated</td>
</tr>
<tr>
<td>Anti-TNF Infliximab</td>
<td>Straumann et al. [120]</td>
<td>Open-label, non-randomized</td>
<td>Adults (3)</td>
<td>5 mg/kg monthly for 2 infusions</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>Well-tolerated</td>
</tr>
</tbody>
</table>

AE adverse event, EoE eosinophilic esophagitis, IgE immunoglobulin E, IL interleukin, OLE open-label extension, RCT randomized controlled trial, TNF tumor necrosis factor

+ Indicates statistically significant response; – indicates no statistically significant response

**Table 1 Clinical studies evaluating monoclonal antibodies for the treatment of eosinophilic esophagitis**

8 [103]. Although the primary endpoint (histologic response, defined as ≥75% reduction in peak esophageal eosinophil count) was not met, the mean eosinophil count was reduced by 60% in the QAX576-treated group and increased by 23% in the placebo arm at 6 months (p = 0.004). No significant improvement in dysphagia was reported by patients assigned to active drug compared with those who received placebo. Development of QAX576 has since been discontinued.

RPC4046 is a monoclonal antibody that blocks IL-13 from binding to both IL-13 receptor subunit alpha 1 (IL13RA1) and 2 (IL13RA2). In a recent phase II placebo-controlled RCT, 99 adult patients with EoE were assigned to RPC4046 180 or 360 mg or placebo once weekly in a 1:1:1 ratio [104]. After 16 weeks of treatment, a statistically significant reduction in mean eosinophil count was observed in both RPC4046 groups (180 mg: 94.8 ± 67.3, p < 0.0001; 360 mg: 96.8 ± 67.3, p < 0.0001).
360 mg: 99.9 ± 79.5, \( p < 0.0001 \)) compared with placebo (4.4 ± 59.9). Moreover, patients treated with RPC4046 were statistically more likely to achieve endoscopic and histologic disease improvement as measured by difference in endoscopic severity score and total histologic grade and stage scores, as measured by a validated disease activity index (the EoE histologic scoring system [EoE-HSS]) [105]. A numerical trend in favor of RPC4046 was reported with respect to symptom improvement, particularly dysphagia. Additionally, results from the OLE study, in which patients received RPC4046 360 mg once weekly, demonstrated sustained symptomatic and histologic improvement at week 52 following successful induction therapy [106].

Two other IL-13 monoclonal antibodies, lebrikizumab and tralokinumab, have been successfully studied in asthma and atopic dermatitis and may be effective for the treatment of EoE [107–110].

Dupilumab, a monoclonal antibody targeting the shared alpha subunit of the IL-4 and IL-13 receptors, was studied in a phase II trial of 47 patients who received subcutaneous dupilumab 300 mg or placebo for 12 weeks (NCT02379052). Clinical response, as measured by the Straumann Dysphagia Index, was significantly improved after 10 weeks’ treatment compared with placebo (45 vs. 19%, \( p = 0.0304 \)). In addition, the peak eosinophil count was significantly reduced at week 12 among patients treated with dupilumab as compared with placebo (92 vs. 15%, \( p < 0.0001 \)). Total EoE-HSS grade and stage scores and distensibility plateau were improved at week 12 (all \( p < 0.001 \) vs. placebo). Considering these promising results, a phase III trial was initiated to determine the efficacy and safety of dupilumab in adult EoE patients and is currently recruiting (NCT03633617).

Other agents targeting inhibition of IL-4 and IL-13 may be effective in down-regulating the Th2 immune response in patients with EoE. A phase I safety trial of MEDI 9314, an anti-IL-4Rα antibody, has completed; at present, this drug will be developed as a treatment for atopic dermatitis (NCT02669667).

### 7.3 Monoclonal Antibodies Targeting Immunoglobulin (Ig)-E

It is generally accepted that mast cell activation in EoE is IgE-dependent, analogous to asthma [1, 111]. Moreover, the increased number of IgE-bearing mast cells, increased B-lymphocyte density, upregulation of genes involved in B-cell activation and B-cell class switching to produce local IgE support the notion that EoE is an IgE-mediated disease [112, 113]. From an epidemiologic perspective, the observation that food- and aero-allergen IgE-mediated hypersensitivity is more frequent in patients with EoE than in the general population further supports this concept [1].

The monoclonal anti-IgE antibody omalizumab was initially evaluated in several case studies that reported clinical, but not histologic or endoscopic, improvement [114, 115]. Subsequently, an RCT was conducted in 30 adult patients with EoE who received either subcutaneous omalizumab 0.016 mg/kg/IgE or placebo. No statistically significant reduction in clinical symptoms or tissue eosinophil counts were observed when the active and control groups were compared at week 16 [116]. In addition, an open-label single-arm trial showed that 33% (5/15) of adult patients treated with omalizumab achieved complete clinical and histologic remission after 12 weeks of therapy (three infusions of 1 mg/kg/IgE) [117]. These findings suggest that IgE does not play an important role in the inflammatory process in EoE. No drug development program for anti-IgE therapy is currently active.

### 7.4 Tumor Necrosis Factor-α Antagonists

High concentrations of TNF-α are found in the esophageal tissue of patients with EoE. While classically thought of as a T-helper type 1 (TH1) cytokine, TNF-α generates a synergistic effect on IL-4 increased eotaxin-3 production as a T-helper type 1 (TH1) cytokine, TNF-α generates a synergistic effect on IL-4 increased eotaxin-3 production [40, 118]. Targeting TNF-α with the IgG1 monoclonal antibody infliximab has been shown to be an effective treatment in chronic inflammatory diseases such as Crohn’s disease [119]. Administration of two infusions of infliximab 5 mg/kg was evaluated in a prospective study of three adult patients with corticosteroid-dependent EoE [120]. Although well-tolerated, infliximab therapy did not induce a clinical response or reduce the number of esophageal eosinophils. This experience should be interpreted with caution because of the small number of patients evaluated; however, it has discouraged further evaluation of this class of agents in EoE.

### 8 Other Potential Therapeutic Targets

Several drugs that target specific molecules and or cells implicated in the pathogenesis of EoE have been proposed as potential future therapeutic agents (Table 2).

#### 8.1 Sialic Acid-Binding Ig-Like Lectin 8 (Siglec-8)

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is a cell surface protein selectively expressed on human eosinophils and mast cells. The binding of specific antibodies to Siglec-8 causes eosinophil apoptosis via caspase- and mitochondrial-dependent pathways. In mast cells, only inhibition of mediator release was observed [121]. In a murine model of EoE, administration of a monoclonal antibody to Siglec-8 (the murine isoform of Siglec-8) decreased esophageal basal zone hyperplasia, angiogenesis, and deposition of...
fibronectin, which are important histologic features in EoE pathogenesis [122]. In another mouse study, administration of AK002, a non-fucosylated IgG1 monoclonal antibody targeting Siglec-8, resulted in selective depletion of tissue and blood eosinophils and reduction of mast cells [123]. A phase II, placebo-controlled trial of AK002 in adult patients with eosinophilic gastritis and/or gastroenteritis is currently recruiting (NCT03496571).

### 8.2 Transforming Growth Factor-β1

The role of TGF-β1 in tissue remodeling and the development of fibrosis in EoE is well-established [33]. Losartan, an angiotensin-1 receptor antagonist widely used for the treatment of hypertension, reduces signaling of TGF-β1 [124–128]. Losartan may be an effective therapy in patients with a fibrotic EoE phenotype who experience persistent symptoms. In support of this concept, losartan has been used to prevent vascular complications in patients with connective tissue disorders such as Marfan and Loeys-Dietz syndrome [129]. A single clinical trial is evaluating the effect of losartan in patients with EoE with or without connective tissue disorders (NCT03029091).

### 8.3 CC Chemokine Receptor Type 3

The CC chemokine receptor type 3 (CCR-3), which is primarily expressed on eosinophils and basophils, has multiple ligands, including CCL-11, -24, and -26 (eotaxins). Eotaxin-3 (CCL-26) is one of the most potent chemo-attractants in EoE. Notwithstanding that an oral CCR3 antagonist (GW766944) was not effective in patients with asthma and eosinophilic bronchitis, blocking this chemokine receptor by using either an anti-CCR3 monoclonal antibody or small molecule could be an effective therapy for EoE [130]. No clinical trials are evaluating CCR3 antagonists in EoE.

### 8.4 Thymic Stromal Lymphopoietin

EoE is associated with polymorphisms in the gene that encodes thymic stromal lymphopoietin (TSLP), a cytokine that promotes Th2-type responses. It was previously

---

**Table 2: Potential therapeutic targets for eosinophilic esophagitis**

<table>
<thead>
<tr>
<th>Target</th>
<th>Drug</th>
<th>Role in disease pathogenesis</th>
<th>Available data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siglec-8</td>
<td>Anti-Siglec-8 antibodies (AK001 and AK002)</td>
<td>Eosinophil apoptosis and inhibition of mast cells</td>
<td>Eosinophil gastritis/gastroenteritis (ongoing); atopic keratoconjunctivitis (ongoing)</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Angiotensin-1 receptor antagonist (losartan)</td>
<td>Tissue remodeling and fibrosis development</td>
<td>Connective tissue disease; EoE (with or without connective tissue disease; ongoing)</td>
</tr>
<tr>
<td>CCR3 (eotaxin-3 receptor)</td>
<td>Anti-CCR3</td>
<td>Recruitment of eosinophils</td>
<td>Asthma</td>
</tr>
<tr>
<td>TSLP</td>
<td>Anti-TSLP (tezepelumab, AMG 157)</td>
<td>Promotion of Th2-type immune response</td>
<td>Asthma; atopic dermatitis</td>
</tr>
<tr>
<td>Integrin αβ7</td>
<td>vedolizumab</td>
<td>Mediates adhesion to MAdCAM-1 (improves eosinophil survival)</td>
<td>Crohn’s disease; ulcerative colitis</td>
</tr>
<tr>
<td>IL-4Ra</td>
<td>Anti-IL-4Ra (MEDI 9314)</td>
<td>Activation and recruitment of eosinophils</td>
<td>Healthy subjects in atopic dermatitis (upcoming)</td>
</tr>
<tr>
<td>IL-5Ra</td>
<td>Anti-IL-5Ra (Benralizumab)</td>
<td>Activation and recruitment of eosinophils</td>
<td>Asthma; atopic dermatitis (ongoing); nasal polyposis (ongoing); eosinophilic gastritis/gastroenteritis (ongoing)</td>
</tr>
<tr>
<td>IL-13</td>
<td>Anti-IL-13 (tralokinumab, lebrikizumab)</td>
<td>Eosinophil recruitment, barrier dysfunction and remodeling</td>
<td>Atopic dermatitis; asthma</td>
</tr>
<tr>
<td>IL-9</td>
<td>Anti-IL-9 (MEDI 528)</td>
<td>Epithelial barrier dysregulation by alteration of E-cadherin</td>
<td>Asthma</td>
</tr>
<tr>
<td>IL-15</td>
<td>Anti-IL-15 (CALY-002)</td>
<td>Controls Th2 and natural killer T-cell responses, promotes epithelial inflammation and prevents eosinophil apoptosis</td>
<td>Celiac disease (upcoming); EoE (upcoming)</td>
</tr>
</tbody>
</table>

**CCR3** CC chemokine receptor type 3, **EoE** eosinophilic esophagitis, **IL** interleukin, **MAdCAM-1** mucosal vascular addressin cell adhesion molecule 1, **TGF** transforming growth factor, **TSLP** thymic stromal lymphopoietin

*Dupilumab (IL-4/IL-13 antagonist) and RPC4046 (IL-13 antagonist) have been previously studied in EoE (see Table 1)*

*Benralizumab (IL-5Ra receptor antagonist) is currently being studied in eosinophilic gastritis/gastroenteritis*
demonstrated in a mouse model that the development of eosinophilic inflammation was TSLP dependent and could be prevented by using antibodies to this cytokine [131]. Furthermore, treatment with fluticasone propionate reduces expression of multiple pro-inflammatory cytokines, including TSLP [68]. A fully human monoclonal IgG2 antibody against TSLP, tezepelumab (AMG 157), was evaluated in patients with mild allergic asthma, and both early and late asthmatic responses reduced [132]. More recently, a phase II trial completed in 113 adult patients with moderate-to-severe atopic dermatitis showed a statistically significant improvement in the Eczema Area and Severity Index score compared with placebo [133]. Overall, targeting of TSLP needs to be further studied, and tezepelumab could hold promise as a potential target agent in EoE.

8.5 Integrin α4β7

The α4β7 integrin, which is expressed on both T-lymphocytes and eosinophils, mediates adhesion to the vascular endothelial cells of the gut through interaction with its ligand, mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1). This mechanism facilitates the migration of these cells from the vasculature into inflamed tissue. It is also noteworthy that E-cadherin, a second ligand for α4β7, is highly expressed by epithelial cells in human allergic gastrointestinal tissue, including EoE. It is believed that this interaction enhances the retention of inflammatory cells in mucosal tissue [134]. Vedolizumab, a monoclonal antibody that selectively blocks the α4β7 integrin interaction with MAdCAM-1, is FDA approved for moderate-to-severe Crohn’s disease and ulcerative colitis. Recently, vedolizumab therapy in a patient with Crohn’s disease and concurrent EoE was reported to induce remission of both diseases [135]. Consistent with this observation, a retrospective series showed improvement of eosinophil-associated gastrointestinal disorders following vedolizumab therapy for inflammatory bowel disease. However, these data are uncontrolled and were not adjusted for the potential influences of known confounders such as corticosteroid therapy [136]. A preclinical trial is currently investigating the mechanistic role of the α4β7 integrin and MAdCAM-1 pathway in eosinophil recruitment in EoE (NCT02546219). Further research is needed to further elucidate the potential role of vedolizumab and other anti-integrins as treatment for EoE.

8.6 IL-9

An increased concentration of IL-9 has been detected in the eosinophils of patients with active EoE [137]. Moreover, IL-9-expressing mast cells are important in food allergies, and patients with EoE sensitized to food have significant increased mast cells in the esophageal epithelium [138, 139]. The effect of an anti-IL-9 antibody, MEDI-528, was evaluated in adults with uncontrolled asthma without success [140]. However, recent data showed that IL-9 and its effect on E-cadherin is an important mediator of esophageal epithelial dysfunction in EoE. Therefore, this pathway may represent a new therapeutic target [141].

8.7 IL-15

IL-15, a cytokine that is upregulated in human EoE, controls Th2 and natural killer T-cell responses, promotes epithelial inflammation and prevents eosinophil apoptosis [142–145]. The effects of IL-15 influence multiple cells that are relevant to the EoE-pathway, thus, blockade of this mediator may be an effective treatment target. An interfering humanized anti-IL-15 antibody with unique neutralization of IL-15 cis and trans signaling that could be relevant to EoE treatment, CALY-002, was recently discovered [146].

9 Conclusion

EoE is a chronic immune-mediated disorder of the esophagus that can adversely impact quality of life. Characterized by eosinophilic inflammation, patients typically experience dysphagia and food impaction as a result of progressive esophageal remodeling and fibrosis. It is now recognized that the pathophysiology of EoE resembles certain aspects of other allergic diseases such as asthma and atopic dermatitis, which has prompted the evaluation of drugs used to treat these conditions within the context of EoE. Furthermore, advanced understanding of the pathological processes involved in EoE has led to the development of unique compounds and the recognition of novel treatment targets that may prove to be effective.

Compliance with Ethical Standards

Funding No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest WEdR has no conflicts of interest that are directly relevant to the content of this article. ESD has received research funding from Adare, Allakos, GSK, Meritage, Miraca, Nutricia, Celgene/Receptos, Regeneron, and Shire; consulting fees from Adare, Alivio, Allakos, AstraZeneca, Banner, Calypso, Enatum, EsoCap, Celgene/Receptos, GSK, Regeneron, Roberts and Shire; and educational grants from Allakos, Banner, and Holoclara. CEP is an employee of Roberts Clinical Trials Inc. BGF has received grant/research support from AbbVie Inc., Amgen Inc., AstraZeneca/MedImmune Ltd., Atlantic Pharmaceuticals Ltd., Boehringer-Ingelheim, Celgene Corporation, Celltech, Genentech Inc/Hoffmann-La Roche Ltd., Gilead Sciences Inc., GlaxoSmithKline (GSK), Janssen Research & Development LLC, Pfizer Inc., Receptos Inc./Celgene International, Sanoﬁ, Santarus Inc., Takeda Development Center Americas Inc., Tillotts Pharma AG, and UCB; consulting fees from Abbott/AbbVie, Akebia Thera-
References


