The mast cell pain connection in eosinophilic esophagitis

Simin Zhang, MD1*, Tetsuo Shoda, MD, PhD1*, Seema S. Aceves, MD, PhD2, Nicoleta C. Arva, MD, PhD3, Mirna Chehade, MD, MPH4, Margaret H. Collins, MD5, Evan S. Dellon, MD, MPH6, Gary W. Falk, MD, MS7, Nirmala Gonsalves, MD8, Sandee K. Gupta, MD9, Ikuo Hirano, MD8, Paneez Khoury, MD10, John Leung, MD11, Amanda K. Rudman Spergel, MD10, Jonathan M. Spergel, MD, PhD12, Joshua B. Wechsler, MD, MS13, Guang-Yu Yang, MD, PhD14, Glenn T. Furuta, MD15, and Marc E. Rothenberg, MD, PhD1 on behalf of the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) Investigators Group

1Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, 2Division of Allergy Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, Rady Children’s Hospital, San Diego, 3Department of

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ALL.15260

This article is protected by copyright. All rights reserved
Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 4Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, 5Division of Pathology, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, 6Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, 7Division of Gastroenterology, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, 8Division of Gastroenterology & Hepatology, Northwestern University Feinberg School of Medicine, 9Division of Pediatric Gastroenterology, Hepatology and Nutrition, Riley Hospital for Children/Indiana University School of Medicine, and Community Health Network, Indianapolis, 10Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, NIH, 11Division of Gastroenterology, Tufts Medical Center, 12Division of Allergy and Immunology, University of Pennsylvania Perelman School of Medicine/Children's Hospital of Philadelphia, 13Gastroenterology, Hepatology & Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago, 14Department of Pathology and Laboratory Medicine, Northwestern University, 15Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado

*Authors contributed equally

Corresponding Author
Marc E. Rothenberg, MD, PhD, Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine: 3333 Burnet Avenue, ML 7028, Cincinnati, OH, 45229 USA; email: Rothenberg@cchmc.org; telephone: 513-803-0257

This article is protected by copyright. All rights reserved
Grant Support

This study was supported by NIH grant K99/R00 AI158660 (to T.S.) and CEGIR (U54 AI117804), which is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), National Center for Advancing Translational Sciences (NCATS), and is co-funded by the National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NCATS, and in part by the Division of Intramural Research, NIAID/NIH. CEGIR is also supported by patient advocacy groups, including the American Partnership for Eosinophilic Disorders (APFED), Campaign Urging Research for Eosinophilic Disease (CURED), and Eosinophilic Family Coalition (EFC). As a member of the RDCRN, CEGIR is also supported by its Data Management and Coordinating Center (DMCC) (U2CTR002818).

Conflicts of Interest

M.E.R. is a consultant for Pulm One, Spoon Guru, Allakos, ClostraBio, Serpin Pharm, Celgene, Shire, Astra Zeneca, GlaxoSmithKline, Allakos, Adare, Regeneron, and Novartis and has an equity interest in the first five, as well as royalties from reslizumab (Teva Pharmaceuticals) and Up-To-Date. M.E.R. is an inventor of patents owned by Cincinnati Children’s Hospital Medical Center. T.S. has funding from the NIH and is a co-inventor of patents owned by Cincinnati Children’s Hospital Medical Center. M.H.C. is a consultant for Alimentiv (formerly Robarts Clinical Trials, Inc), Allakos, Arena, AstraZeneca, Calypso, Esocap, GlaxoSmithKline, Receptos/Celgene/BMC, Regeneron, and Takeda and received research funds from Receptos/Celgene/BMC, Regeneron, and Takeda. J.B.W. is a consultant for Allakos, Regeneron, Sanofi/Genzyme, AstraZeneca, and InveniAI and received clinical trial support from Allakos and Regeneron. S.K.G. is a consultant Abbott, Adare, Allakos, Celgene, Gossamer Bio, QOL, UpToDate, Medscape, and Viaskin and received research support from Shire, Allakos, Adare, and CEGIR (NIH U54 AI117804). J.M.S. has funding from the NIH, Regeneron, Sanofi, Novartis, and FARE; is a consultant for Regeneron, Allakos, Sanofi, Novartis, and Takeda; and is an author for UptoDate. S.A.A. has funding from NIH and is an educational speaker for MedScape and Sanofi-Regeneron, a consultant for AstraZeneca, and an author for UpToDate. M.C.

This article is protected by copyright. All rights reserved
received consulting fees from Regeneron, Allakos, Adare/Ellodi, Shire/Takeda, AstraZeneca, Sanofi, and Bristol Myers Squibb and received research funding from Regeneron, Allakos, Shire/Takeda, AstraZeneca, Adare/Ellodi, and Danone. E.S.D. received research funding from Adare/Ellodi, Allakos, Arena, AstraZeneca, GSK, Meritage, Miraca, Nutricia, Celgene/Receptos/BMS, Regeneron, and Shire/Takeda; received consulting fees from Abbott, Abbvie, Adare/Ellodi, Aimmune, Allakos, Amgen, Arena, AstraZeneca, Avir, Biorasi, Calypso, Celgene/Receptos/BMS, Celldex, Eli Lilly, EsoCap, GSK, Gossamer Bio, Landos, Morphic, Nutricia, Parexel/Calyx, Phathom, Regeneron, Revolo, Robarts/Alimentiv, Salix, Sanofi, and Shire/Takeda; and received educational grants from Allakos, Banner, and Holoclara. A.K.R.S.’s co-authorship of this publication does not necessarily constitute endorsement by the National Institute of Allergy and Infectious Diseases, the National Institutes of Health or any other agency of the United States government. S.Z. has no relevant conflicts of interest. I.H. received research funding from Adare/Ellodi, Allakos, Arena, AstraZeneca, Meritage, Celgene/Receptos/BMS, Regeneron/Sanofi, and Shire/Takeda; received consulting fees from Adare/Ellodi, Allakos, Amgen, Arena, AstraZeneca, Celgene/Receptos/BMS, Eli Lilly, EsoCap, Gossamer Bio, Parexel/Calyx, Phathom, Regeneron, Sanofi, and Shire/Takeda; and is an educational speaker for MedScape and Sanofi-Regeneron.

List of Abbreviations
CCHMC, Cincinnati Children’s Hospital Medical Center; CEGIR, Consortium of Eosinophilic Gastrointestinal Disease Researchers; EDP, eosinophilic esophagitis diagnostic panel; EoE, eosinophilic esophagitis; HPF, high-power field; MC, Mast cells; PRO, Patient-reported outcome; EEsAI, eosinophilic esophagitis activity index; PEESS, Pediatric Eosinophilic Esophagitis Symptom Scores; HSS, EoE Histology Scoring System; EREFS, EoE endoscopic reference score.

Writing Assistance
Shawna Hottinger provided editorial assistance as a medical writer funded by Cincinnati Children’s Hospital Medical Center.

This article is protected by copyright. All rights reserved
Author Contributions

T.S., S.Z., and M.E.R. conceived the study and design. T.S. and S.Z. performed the laboratory work. T.S. contributed to the statistical analysis. M.H.C., N.C.A., and G.Y. performed the pathologic assessments. S.S.A., M.C., C.M.D., E.S.D., G.W.F., N.G., S.K.G., I.H., P.K., J.L., A.K.R.S., J.M.S., J.B.W., G.T.F., and M.E.R. provided administrative, clinical, or material support through CEGIR. S.Z. wrote the first draft of the manuscript, and T.S. and M.E.R. reviewed and completed the final draft. M.E.R. obtained funding and led the study. All of the authors discussed the results and commented on the manuscript.

Word counts

600 / limit 600 words
To the Editor,

Eosinophilic esophagitis (EoE) is a chronic inflammatory disease with esophageal dysfunction; symptoms include dysphagia, heartburn, and pain.\(^1\) Although EoE diagnosis includes \(\geq 15\) eosinophils per high-powered field (eos/HPF),\(^1\) eosinophilia does not correlate well with clinical symptoms,\(^1\) complicating therapeutic decision-making.

Mast cells (MCs) are involved in allergy, including EoE,\(^2\) and neuromodulation.\(^3\) MCs reside in peripheral tissue and communicate with nearby structures, including nerve endings. MC-nerve associations are found in several tissues (e.g., brain, intestine, skin).\(^3\) Although MCs are involved in EoE pathogenesis and MC-associated genes are upregulated in EoE,\(^2\) the association is understudied.

Study design and demographic characteristics are summarized (Figure 1A, Supplementary Table 1). We examined a Cincinnati Children’s Hospital Medical Center cohort (n=43) of patients with active EoE (≥15 eos/HPF; n=25) and normal controls (n=18) who presented for standard-of-care endoscopy with esophageal biopsies. Using Spearman’s rank correlation coefficient, we examined the correlations of MC and eosinophil counts and MC counts with expression of 94 EoE relevant esophageal genes. Esophageal MC counts were associated with eosinophil counts (\(r = 0.54, P = 0.0002\)). From these 94 genes, \(CPA3\) (\(r = 0.72, P < 0.0001\)) and \(HPGDS\) (\(r = 0.76, P < 0.0001\)) most significantly associated with MC counts (per correlation coefficients) (Figure 1B, left and middle). The \(CPA3+HPGDS\) sum correlated even more highly with MC counts (\(r = 0.77, P < 0.0001\)) (Figure 1B, right).

We further examined a Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) cohort of patients with EoE [active (≥15 eos/HPF) n=115, inactive (<15 eos/HPF) n=79] who had enrolled in OMEGA (NCT02523118), completed patient-reported outcome metrics and EoE Histology Scoring System (HSS) components of a core EoE outcome set;\(^4\) and had expression of 94 EoE-relevant esophageal genes (For detailed information, see the Online supplementary). We divided active EoE into four quartiles by using \(CPA3+HPGDS\) sum as a MC count surrogate marker; the highest and lowest quartiles represented MC-high and MC-low, respectively. Although peak
eosinophil counts did not differ between MC-high and MC-low, MC-high had a significantly lower EDP score (P < 0.0001), indicating more severe disease (molecular level), and higher histologic score (P = 0.022) (Figure 1C), indicating more severe histologic abnormalities. The presence of pain, but not dysphagia (P = 0.530), was significantly higher in MC-high than MC-low (P = 0.035) (Figure 1D).

Expression of TRPV1 (pain-associated gene) and CPA3+HPGDS sum (MC surrogate marker) were significantly increased in patients with active/inactive EoE with pain, whereas peak tissue eosinophil count and CLC expression (eosinophil surrogate marker) did not significantly differ by pain (Figure 2A-C). TRPV1 showed significant association with CPA3+HPGDS sum in patients with active/inactive EoE (Figure 2D). TRPV1 and MCs were in close proximity by co-immunofluorescence of esophageal biopsies (Figure 2E), suggesting an interaction.

Our findings indicate that TRPV1 and MCs may modulate pain in EoE. Pain positively associated with molecular expression of TRPV1, CPA3, and HPGDS, but not eosinophilia, suggesting MC specificity. MCs release mediators that act on the nociceptor subset of sensory neurons, leading to pain sensitization. Nociceptors mediate pain, are present in peripheral tissues (e.g., gastrointestinal tract, skin), and express stimuli-triggered receptors (e.g. TRPV1). In an EoE animal model, antigen challenge had a TRPV1-mediated, sensitizing effect on neurons. TRPV1-mediated MC activation and neuronal sensitization may underlie visceral hypersensitivity, and esophageal mucosal nerve fibers in patients with reflux have increased TRPV1 immunoreactivity. We observed proximity of MCs and nerves in EoE esophageal biopsies. Thus, TRPV1 and MCs likely contribute to pain in EoE.

Although using MC genes as a surrogate marker instead of MC counts is a limitation, our findings provide insight into disease pathophysiology and support MCs contributing to specific EoE symptoms, especially pain.
References

Figure 1. MC and clinical feature association in EoE. A, Study methodology. B, MC count and MC-associated gene correlation (CPA3, left; HPGDS, middle; CPA3+HPGDS sum, right) (Spearman correlation). C, MC-low and MC-high comparison for disease parameters. *P < 0.05 and ****P < 0.0001 (Mann–Whitney U test). D, MC-low and MC-high comparison for two-way frequencies of pain (left) and dysphagia (right). *P < 0.05 (Chi-square test). CCHMC, Cincinnati Children’s Hospital
Medical Center; CEGIR, Consortium of Eosinophilic Gastrointestinal Disease Researchers; MC, mast cell; EoE, eosinophilic esophagitis; EDP, EoE Diagnostic Panel; HSS, EoE Histology Scoring System; HPF, high-power field; NS, not significant.
Figure 2. MCs and TRPV1 associate with pain in EoE. A-C, TRPV1 (A), CPA3+HPGDS sum (MCs surrogate marker) (B), and eosinophil parameters (C) in EoE by pain. *P < 0.05 and NS (Mann–Whitney U test). D, TRPV1 correlates with MC-associated (CPA3+HPGDS sum) and eosinophil-associated genes (CLC) (Spearman correlation). E, Immunofluorescence staining of esophageal tissue for tryptase (green), TRPV1 (magenta), and DAPI (blue) (n=2). The MC (arrows)–nerve (arrowheads) distance is 45.70 µm (image 1) and 27.92 µm (image 2). MC, mast cell; EoE, eosinophilic esophagitis; HPF, high-power field; NS, not significant.